一、監(jiān)督學習模型
二、無監(jiān)督學習模型
聚類:聚類模型如K-means,用于將數據分組為相似的集群。關聯規(guī)則學習:如Apriori算法,用于發(fā)現數據中的隱藏模式和關系。三、半監(jiān)督學習模型
標簽傳播算法:結合監(jiān)督和無監(jiān)督學習的優(yōu)勢,適用于標簽不完全的數據。四、強化學習模型
Q學習:一種基于價值函數的強化學習算法,用于在未知環(huán)境中尋找優(yōu)異策略。深度Q網絡(DQN):結合深度學習與Q學習,用于處理復雜的強化學習任務。常見問答:
Q1: 什么是監(jiān)督學習?
答: 監(jiān)督學習是一種學習算法,利用已標記的訓練數據來訓練模型,并進行預測或分類。
Q2: 無監(jiān)督學習和監(jiān)督學習有何區(qū)別?
答: 無監(jiān)督學習不需要標簽數據,主要用于聚類和關聯分析,而監(jiān)督學習則依賴于標簽數據進行預測和分類。
Q3: 強化學習在哪些領域有應用?
答: 強化學習廣泛應用于自動駕駛、游戲AI、工業(yè)控制等領域。